Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAT 234

Practice Exam 2

Spring 2023

1. In a gambling game, a woman is paid $3 if she draws a jack or a queen and $5 if she draws a king or an ace from an ordinary deck of 52 playing cards. If she draws any other card, she loses. How much should   she pay to play if the game is fair?

X

Jack or Queen

King or Ace

Any other Card

Payout

$3

$5

$0

P(Jack or Queen) = 8/52

P(King or Ace) = 8/52

P(Any oter Card) = 36/52

E(X) = (8/52) ∗ $3 + (8/52) ∗ $5 + (36/52) ∗ $0 = $1.23

2. Let X be a random variable with density function

f(x) = { 

1 < x < 2,

elsewhere

Find the expected value of g(X) = 2X + 1.

E[g(X)] = ∫   13 (2x + 1)(x2  + 2x − 1)dx

3     2

1

=  3  [2 x4  + 5 x 3  x]   = 109

3. Find E(Y/X) for the density function

f(x, y) = {                     0,

0 < x < 1, 0 < y < 1,

elsewhere

E [ ] = ∫  ∫   6  x 3  (1 − y2 ) dxdy

0      0

4. Let the random variable X represent the number of drives a server operates per workflow. The probability distribution for the number of drivers per sales workflow is

X

50

75

100

f(X)

0.3

0.5

0.2

The probability distribution for the number of drivers per inventory workflow is

X

50

100

200

f(X)

0.2

0.5

0.3

Show that the variance of the probability distribution for the sales workflow is smaller than that of the inventory workflow.

us   =  E(X)  =  (50)(0.3)  +  (75)(0.5)  +  (100)(0.2)  =  72.5

oS(2)  = (50 − 72.5)2 (0.3) + (75 − 72.5)2 (0.5) + (100 − 72.5)2 (0.2) = 306 .25

uI   =  E(X)  =  (50)(0.2)  +  (100)(0.5)  +  (200)(0.3)  =  120

oS(2)  = (50 − 120)2 (0.2) + (100 − 120)2 (0.5) + (200 − 120)2 (0.3) = 3100

5.  The weekly views (in 10,000’s) of an average entertainment YouTube channel is a continuous random variable X having the probability density

f(x) = { (2x − 1),

1 < x < 2,

elsewhere


Find the mean and variance of X.

u  =  E(X) =    ∫ x(2x − 1)dx =    ∫  (2x2  x)dx =     [        −    x2 ]   =

E(X2) =    x2 (2x − 1)dx =    ∫  (2x3  x2 )dx =     [        −    x 3 ]   =

o 2  = E(X2) − (u)2  =  − ()   =   =  ≈ 0.0764 

6. The fraction X of business analytics majors and the fraction Y of computer science majors who compete for a job are described by the joint density function

f(x, y) = {xy,

0 < x < 1, 1 < y < 2,

elsewhere

Find the covariance and correlation coefficient of X and Y.

g(x) = 3 xy dy = 6 x[y2 |1(2)] = 2x, 0 < x < 1

4    1                       4                     2

0

uX  = E(X) = 12x2 dx =

1                          1

0

2    2                       2                     14

1

E(Y2) = 6 ∫  y 3 dy = 6 (16 1) =  6 

E(XY) = 2 1x2y 2 dxdy =

oX(2)  =  − ()   =

15        14  2           13

oXY  = E(XY) − uX uY  =  − () () = 0

0

pXY   =   = 0

() ()

7. If the joint density function of X and Y is given by

f(x, y) = { 

Find the expected value of g(X, Y) =  + X2 Y

E(g(X, Y)) =  ∫  ∫   dxdy =

8. A random variable X has a mean u = 10 and a variance G 2  = 4. Using Chebyshev’s theorem, find

(a)P (|X  −  10| ≥  3) =

(b)P (|X  −  10| <  3) =

(c)P(5  <  X  <  15) =

(a)P (|X  −  10| ≥  3) =

(b)P (|X  −  10| <  3) =

(c)P(5  <  X  <  15) =

9. It is known that 60% of mice inoculated with a serum are protected from a certain disease. If 5 mice are

inoculated, find the probability that

(a) none contracts the disease;

(b) fewer than 2 contract the disease;

(c) more than 3 contract the disease.

(a) p = 0.60; n = 5;x = 0; P(x = 0) = 0.01024

(b) p = 0.60; n = 5;x = 0,1; P(x < 2) = P(x = 0) + P(x = 1) = 0.01024 + 0.0768 = 0.0892  (c) p = 0.60; n = 5;x = 4, 5; P(x > 3) = P(x = 4) + P(x = 5) = 0.2592 + 0.07776 = 0.33696

10. A student drives to school and encounters a traffic signal. The traffic signal stays green for 35 seconds, yellow for 5 seconds, and red for 60 seconds. Assume that the student goes to school each weekday between 8:00 and 8:30 a.m. Let X1 be the number of times he encounters a green light, X2 be the number of times he encounters a yellow light, and X3 be the number of times he encounters a red light.     Find the joint distribution of X1, X2, and X3 .

n

x1 , x2 , x3

11. A random committee of size 3 is selected from 4 doctors and 2 nurses. Write a formula for the prob- ability distribution of the random variable X representing the number of doctors on the committee. Find P(2 ≤ X ≤ 3).

Population Size = 6, Sample Size = 3, Success = 4

(x; 6,3,4) = (x(4))(3 x )  for x = 1,2,3

(3(6))       ,

P(2  ≤  X  ≤  3) =

12. From a lot of 10 missiles, 4 are selected at random and fired. If the lot contains 3 defective missiles

that will not fire, what is the probability that

(a) all 4 will fire?

(b) at most 2 will not fire?

Population Size = 10, Sample Size = 4, Success = 3; ℎ(x; 10,4,3) =  (a) ℎ(0; 10,4,3) =  =  =  =

(b) P(X 2) =  +  +  =  = 30

ℎ(0; 10,4,3) =  =  =  =

ℎ(1; 10,4,3) =  =  =  =  =

ℎ(2; 10,4,3) =  =  =  =  =

13. For a certain type of copper wire, it is known that, on the average, 1.5 flaws occur per millimeter.     Assuming that the number of flaws is a Poisson random variable, what is the probability that no flaws    occur in a certain portion of wire of length 5 millimeters? What is the mean number of flaws in a portion of length 5 millimeters?

5.53  ×  10−4; u  =  7.5

14. Given a standard normal distribution, find the area under the curve that lies

(a) to the left of z = −1.39;

(b) to the right of z = 1.96;

(c) between z = −2. 16 and z = −0.65;

(d) to the left of z = 1.43;

(e) to the right of z = −0.89;

(f) between z = −0.48 and z = 1.74.

Use the z-table at end of text.

(a) 0.0823; (b) 0.0250; (c) 0.2424; (d) 0.9236; (e) 0.8133; (f) 0.6435

15. A research scientist reports that mice will live an average of 40 months when their diets are sharply restricted and then enriched with vitamins and proteins. Assuming that the lifetimes of such mice are normally distributed with a standard deviation of 6.3 months, find the probability that a given mouse will live

(a) more than 32 months;

(b) less than 28 months;

(c) between 37 and 49 months.

Use the z-table at the end of text.

(a) 0.8980; (b) 0.0287; (c) 0.6080

16. A process for manufacturing an electronic component yields items of which 1% are defective. A quality control plan is to select 100 items from the process, and if none are defective, the process continues. Use the normal approximation to the binomial to find

(a) the probability that the process continues given the sampling plan described;

(b) the probability that the process continues even if the process has gone bad (i.e., if the frequency of defective components has shifted to 5.0% defective).

Use the z-table at the end of the text.

(a) 0.3085; (b) 0.0197