Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

DACM Assignment #2 for ECO220Y1Y (weight: 4% of course grade)

Due: Before noon on Thursday, April 6, 2023, and submitted via Quercus

Purpose of this Assignment and What You Gain from Working on It

Analysts, researchers, economists, and anyone laboring to make sense of data, must communicate what they     have discovered. Figures, tables, and writing help readers get the message. This assignment gives you a chance  to further your skills in communicating empirical results using a table and writing. In addition, by working to        construct a table yourself and reviewi ng tables constructed by economists, you deepen your ability as a reader  to understand how economists communicate analyses employing our course concepts and skills in academic journals. This assignment is your opportunity to:

1) Enhance your fluency in applying course concepts to real data and contexts.

2) Showcase your Excel analysis abilities.

3) Sharpen your skills in comprehending tables created by economists.

4) Boost your own ability to communicate via a table a nd capitalize on readers’ natural attraction to anything that helps visualize empirical results.

5) Elevate your writing skills. Be clear, correct, concise, and coherent.

These are key skills for your other courses and future careers. More immediately, during our final exam you will draw especially heavily on your skills with 1), 3), and 5) above.

How is the DACM Assignment #2 Different from DACM Assignment #1?

The two DACM assignments are similar in structure. However, unlike Assignment #1, for Assignment #2 you        must include inferential statistics. But, before you get carried away with excessive discussion of P-values and      statistical significance, remember that economists focus the most meaningful discussion on point estimates and economic significance. Further, after Assignment #1 we studied multiple regression, differences in means, and   differences in proportions. We expect your Assignment #2 to include at least one of these more recent topics.

Your Objectives and Expectations for Your Effort

Using an approved dataset from DACM on Quercus marked by *** – and methods from ECO220Y and DACM, do a data analysis. Your analysis must be something that you can capture with a table and discuss. Also, your    analysis must be at least a twist on what appears already in DACM or elsewhere in our course and not simply a replication of what has already been done. You may use more than one of the approved datasets if that makes sense. You do not need to use the same data for Assignments #1 and #2. Your empirical analysis must be presentable in a well-constructed table. This assignment ends with sample tables to help you gets some ideas.

To earn good marks, your analysis must be sufficiently complex so you can demonstrate the requisite mastery. Sufficiently complex means using inferential statistics and at least one of these: multiple regression, difference in means, and/or difference in proportions, as already mentioned above. When appropriate and meaningful,   panels for heterogeneity analysis or multiple ways to measure an effect can also add useful complexity. Of course, complicating things unnecessarily and without a clear purpose is not helpful to your assignment.

In several short paragraphs, offer a clear explanation of what we can learn from your analysis and table. Give the necessary context and correctly apply relevant course concepts.

Imagine your audience is your peers who have some training in economics and statistics. You are expected to clearly explain your analysis, table, and take-away message and not put the burden on the reader.

Create a great title like a headline it should succinctly convey your findings and title your table too. Your primary submission the title, writing, and table must fit on one side of one page . On the second page, itemize the steps in Excel to replicate your findings and list the tables that inspired you.

Spend about eight to ten hours on this assignment. This gives time to read and review this assignment and sample tables, do your analysis, construct your table, write a discussion, revise both, and itemize the replication steps in Excel and the inspiring tables. This is a mini project, and it is not expected to take days of your time.

Formatting Requirements for Your Assignment

From your first to final draft, use Microsoft Word with file type .docx and portrait orientation, not

landscape. The table and text must be created in Word: do not use images or screenshots.

The first page has your title, paragraphs, and table. All should comfortably fit on one side of one page.

We do not dictate fonts, margins, and spacing, but it must comfortably fit and be visually appealing.

The second page gives succinct, yet clear, bullet lists of replication steps and tables. For replication, the

first step is: open tba.xlsx, where tba” is the selected DACM dataset marked by *** in Quercus. For inspiring tables, list clearly. For example, from Denning et al. (2022): “Table 6 – GPA Differences.”

Do NOT include a cover page. Do NOT write your name and student number.

For how to be concise, and not wordy, see https://advice.writing.utoronto.ca/revising/wordiness/.

Your Steps to Complete this Assignment

To help break down this assignment into doable steps, you may find this helpful:

1) Carefully read this assignment: it is five pages and is packed with critical information for your success.

2) Browse through all the sample tables at the end of this assignment they are on Quercus.

o Jot down your ideas.

3) Browse through the approved (***) DACM data sets on Quercus.

o Jot down your ideas.

4) Pick a data set and try doing some analysis in Excel with it.

5) On a piece of paper using pencil and an eraser or on your tablet, sketch out a table you have in mind.

6) Revise your analysis and revise your sketch of a table.

7) Repeat step 1). Now that you have done some hard work, questions will occur to you. They are likely answered in this assignment. A second read is helpful at this point.

8) Create a Microsoft Word document.

9) Write your replication steps and double-check your analysis for correctness and any further revisions.

10) Construct your table in Microsoft Word.

11) Write your discussion.

12) Write your title.

13) Revise your table to improve its ability to communicate.

14) Revise your discussion and title to improve clarity, correctness, conciseness, and coherence.

15) Submit to Quercus well before the deadline and make sure your assignment looks as intended. If not, fix formatting issues and resubmit before the deadline.

How We Mark Your Assignment: The Rubrics

There are 20 points possible. A second table explains Excellent,” “Good,” “Adequate,” “Flawed,” and Fail.” 1

CATEGORY: Criteria

Mark

TABLE: Conveys a correct message/analysis that is sufficiently          complex. Is well labelled and is clear on its own. Overall, adheres to the norms of substantive tables in academic research. Is well            constructed and communicates effectively.

6.0 Excellent

4.8

Good

3.6 Adequate

3.0 Flawed

1.8

Fail

DISCUSSION: Correct and substantive discussion of the findings and table. Gives needed context. Correctly applies relevant course          concepts. Supports the message with thorough and insightful           supporting evidence.

6.0 Excellent

4.8

Good

3.6 Adequate

3.0 Flawed

1.8

Fail

OVERALL PRESENTATION: Gives a clear and coherent message that the reader easily understands. Uses effective titles. Writing is           concise and not wordy. Is visually appealing. Is free of typos and      formatting issues. Follows all instructions.

4.0 Excellent

3.2

Good

2.4 Adequate

2.0 Flawed

1.2

Fail

REPLICATION: Clear, accurate, complete, and succinct replication steps for a substantive analysis in Excel. Lists inspiring tables.

4.0 Excellent

3.2

Good

2.4 Adequate

2.0 Flawed

1.2

Fail


Mark: Meaning Short

Meaning Long

Excellent: Clearly meets, or exceeds, all criteria.

Demonstrates a thorough understanding of relevant concepts and mastery of relevant     analysis skills. Application of knowledge and skills is highly effective and any minor errors and/or omissions do not detract from the overall impact.

Good: Meets important

criteria.

Demonstrates considerable understanding of relevant concepts and good proficiency with relevant analysis skills. Application of knowledge and skills is considerably effective.

Adequate: Approaches meeting important criteria.

Demonstrates some understanding of relevant concepts and some proficiency with relevant analysis skills. Application of knowledge and skills is moderately effective.

Flawed: Falls short of important criteria but shows progress towards them.

Demonstrates limited understanding of relevant concepts and limited proficiency with relevant analysis skills. Application of knowledge and skills is slightly effective. There is evidence of progress towards understanding and proficiency, but overall falls short.

Fail: Insufficient progress towards important criteria.

Demonstrates insufficient understanding of relevant concepts and insufficient proficiency with relevant analysis skills. Application of knowledge and skills is ineffective.

Uphold Your Academic Integrity

Submit your own work. Collaboration is not allowed. While you may use services provided by University of Toronto, you may not use tutoring, editing, or other services of individuals or other organizations. You may not use generative artificial intelligence, such as chat bots, or any tool that produces writing that is not yours. Ouriginal – a plagiarism detection tool assesses your submission. Avoid plagiarism: https://advice.writing.utoronto.ca/using-sources/how-not-to-plagiarize/. TAs also assess integrity. If it appears that any empirical results are made up (i.e. fake), beyond a mark of zero for failing to meet the assignment expectations, we alert Student Academic Integrity (SAI) https://www.artsci.utoronto.ca/current/academic-advising-and-support/student-academic-integrity. Similarly, we alert SAI of all academic integrity concerns.