Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Mock midterm exam via the programme M¨obius for MATH 254: Probability and Statistics II Spring 2023

March 12, 2023

Question 1

We toss a fair repeatedly and independently. We let Xi  = 1 if the outcome is heads at the i-th toss or 0 if tails. Define Sn  = X1 + · · · + Xn .

a Determine E(Sn(2)) 1 point(s)

b Determine E(2Sn) 2 point(s)

c Determine the probability of the event {Sn  = 1}. 2 point(s)

d Determine the probability of the event n(l) = } 2 point(s)

e Determine the probability of the event  n(l)Xn exists} 2 point(s)

Question 2

a Which of the following statements are true?

(i)  If X, Y are discrete random variables then so is XY. 1 point(s)

(ii)  If X is a continuous random variable and Y is discrete with values 1, 2, . . ., then XY is continuous. 1 point(s)

(iii)  The expectation of a random variable always exists. 1 point(s)

(iv)  If X and Y are independent random variables then so are X + Y and X − Y. 1 point(s)

(v)  If X is an absolutely continuous random variable with density f (x) such that f (x) > 0 for all x e R, then Y = min(X, 1) is continuous. 1 point(s)

b Which of the following statements is correct? 2 point(s)

(i)  A Poisson(2) random variable has expectation 1/2.

(ii)  If X and Y are Poisson(1) random variables then X + Y is Poisson(2).

(iii)  The variance of a Poisson(λ) random variable is always 1/λ .

(iv)  The variance of a Poisson(λ) random variable is λ .

(v)  If X is Poisson(λ) then X/λ is always Poisson(1).

(vi)  If X is Poisson(1) then X has the memoryless property.

Question 3

a Let X be an exponential(1) random variable. Determine the density function of U = 1/X. 2 point(s)

b Let X be a random variable with distribution function F(x) = x2 103 point(s)

c Let (X, Y) be a random vector with density that is uniform on the square [0, 1] × [0, 1]. What is the distribution function of Z = max(X, Y)? 3 point(s)

d We have 4 dice at hand, throw them on the table, and see what face each one lands on. Let

ω = (ω1, ω2, ω3, ω4 ), with ωi being the face (1, 2, 3, 4, 5 or 6) die i lands on. Let Ω be the set of all outcomes ω . Define the random variables Xi(ω) := ωi, i = 1, 2, 3, 4. Assume that P is uniform on Ω .

(i)  How many elements does contain? 1 point(s)

(ii)  Are the random variables X1 + X2(2), X3(3) + X4(4) independent? 1 point(s)

(iii)  What is the probability of the event that X1 + X2 + X3 is even? 2 point(s)

Question 4

a Find the probability generating function G(s) = E(sX ) of a random variable X such that P(X = 2k) = 1/2k, k = 1, 2, . . . What is the radius of convergence of the corresponding power series? 3 point(s)

b Determine the probability generating function of X1 + X2 when X1, X2 are independent and each geometric(p)? 2 point(s)

c Determine the moment generating function M(t1, t2 ) = E[et1X1+t2X2] of the random vector

(X1 .X2) = (Z1 + Z2, Z1 − Z2), when Z1, Z2 are i.i.d. normal(0, 1) each. 3 point(s)

d What is the distribution of the sample mean of n i.i.d. normal(0, 1) random variables? 2 point(s)