Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ECO 317 - Intermediate Macroeconomic Theory

Problem Set #3

Spring 2023

This problem set is  due  at 4:10pm on  Wednesday, March 15.  It covers material from the Solow  Growth Model.   The relevant chapters in the textbook are  chapter 4,  chapter 7,  and chapter 8.  You can achieve a maximum of 100 points.  You are allowed to work in groups, but please hand in your individual copy of the solution and indicate who you worked with.

Question 1 (15 points)

China’s real GDP per capita has been growing rapidly in the last four decades. Its average growth rate between 1979 and 2018 was 9.5%.  At the same time, US real GDP per capita grew an average of 1.7% per year.  In 2019, real GDP per capita in the US was equal to $65,118. Chinese real GDP per capita was equal to $16,784 (in $US PPP).

(a) Assuming the average growth rates from the last few decades persist into the future, how long will it take for China to catch up with the US in terms of income per capita?

(b) Now assume that China’s average GDP growth rate after the year 2019 will slow down to 7% while the US growth rate remains at 1.7% per year.  How long will it take for China to catch up with the US in terms of income per capita?

(c) Now assume that China’s average GDP growth rate after the year 2019 will slow down to 3% while the US growth rate remains at 1.7% per year.  How long will it take for China to catch up with the US in terms of income per capita?

(d) Assume that the US growth rate remains at 1.7% per year. Calculate the average annual growth rate that is needed for China to catch up with the US in 2040.

(e) Assume that the US growth rate remains at 1.7% for the next 10 years and increases to 3% afterwards. The Chinese growth rate remains at 9.5% per year. How long will it take for China to catch up with the US in terms of income per capita?

Question 2 (27 points)

Consider an overlapping generations model in which households live for two periods. Lifetime utility for a household born at t is given by

U = lncy,t + β lnc0,t+1,   β ∈ [0, 1]                                        (1)

where cy,t  denotes consumption when young, and c0,t+1  denotes consumption when old. The household faces two flow budget constraints. When young, the households inelastically sup- plies one unit of labor and earns wage rate wt :

cy,t + st  ≤ wt                                                      (2)

When old, the household consumes his savings:

co,t+1  ≤ (1 + Rt+1) st                                                 (3)

where Rt+1  is the gross return on capital in t+1. Note that we assume here that capital does not depreciate, i.e. δ = 0. Cohort size at t is given by Nt . Population grows at rate n.

(a) Derive expressions for the household’s optimal consumption when young (cy(∗),t ), optimal consumption when old (co(∗),t+1), and optimal savings st(∗) .

Assume that output in this economy is produced by a firm which lives forever and combines labor Lt  and capital Kt  to produce output according to

Yt  = At F(Kt ,Lt ) = At Kt(α)Lt(1)α (4)

The firm hires labor at wage rate wt  and capital at interest rate Rt .

(b) Solve the firm’s profit maximization problem to derive its optimal labor demand Lt(D) and capital demand Kt(D) .

(c) Determine the equilibrium on the labor market. That is, derive Lt(∗)  and w . The capital stock evolves according to

Kt+1  = st Nt                                            (5)

(d) Determine the equilibrium on the capital market. That is, derive K and Rt(∗) . (e) Show that in equilibrium, the goods market clears: Yt  = Ct + It .

(f) Find an expression that links the future capital stock per worker kt+1  ≡ to the current capital stock per worker kt   ≡  N(K)t(t)    and the exogenous variables of the model (α,β,A,n).

(g) Solve for the capital stock per worker and output per worker in the steady state of the economy.

(h) Determine what happens to output per worker in steady state if households become more patient, i.e. if β increases. Provide some intuition.

(i) Assume that you have two countries, A and B .  Suppose that in steady state, income per capita in country A is three times higher than income in country B. It holds that βA  = 0.7, βB  = 0.8, and αA  = αB  = 1/3.  Further assume that nA  = nB .  Assuming that AB  = 1, determine the value of AA  that rationalizes this income difference.

Question 3 (20 points)

This question is similar to Question 2 with the only difference that we assume a different lifetime utility function for households. More specifically, lifetime utility for a household born at t is now given by

U = (cy,t )0.5 + β(c0,t+1)0.5 ,   β ∈ [0, 1]                                     (6)

As before, cy,t  denotes consumption when young, and c0,t+1  denotes consumption when old. The household faces two flow budget constraints. When young, the households inelastically supplies one unit of labor and earns wage rate wt :

cy,t + st  ≤ wt                                           (7)

When old, the household consumes his savings:

co,t+1  ≤ (1 + Rt+1) st                          (8)

where Rt+1  is gross the return on capital in t+1. Note that we assume here that capital does not depreciate, i.e. δ = 0. Cohort size at t is given by Nt . Population grows at rate n.

(a) Derive an expression for the household’s optimal savings st(∗) .  Note how it differs from the expression for savings you obtained in part (a) of Question 2.

Assume that output in this economy is produced by a firm which lives forever and combines labor Lt  and capital Kt  to produce output according to

Yt  = At F(Kt ,Lt ) = At Kt(α)Lt(1)α (9)

The firm hires labor at wage rate wt  and capital at interest rate Rt .

(b) Determine the equilibrium on the labor market. That is, derive Lt(∗)  and w . Is the labor market equilibrium different from the equilibrium you found in Question 2?

The capital stock evolves according to

Kt+1  = st Nt                                                  (10)

(c) Sketch the equilibrium on the capital market, i.e. provide a graph of capital supply and capital demand in a space where capital Kt  is on the x-axis and the interest rate Rt  is on the y-axis. [Note:  You are not required to solve for the equilibrium analytically here as this would be quite challenging algebraically.]

(d) Describe how the capital market equilibrium you depicted in part (c) is different from the capital market equilibrium in Question 2.

(e) What happens to equilibrium capital when households become more patient, i.e.  if β increases? Is the effect on equilibrium capital smaller or greater compared to the effect of an increase in β on equilibrium capital in Question 2? Provide some intuition. [Note: You do not need to provide any formal analysis here, intuition based on your results in part (c) and (d) suffices.]

Question 4 (20 points)

The central equation governing the dynamics of capital per worker in the Solow model is given by:

kt+1  = kt(α)

Output per worker is given by

yt  = At kt(α)                                                         (12)

(a) Solve for expressions for steady state capital and output per worker as functions of At and other parameters.

Consider a country with β = 0.9, α = , n = 0 and At  = 1.

(b) Calculate the steady state level of output per worker for this country.

(c) Now suppose that at some time t, At  is permanently increased to At  = 3.  Calculate and plot the responses of output per worker over the next 10 periods.

(d) Calculate the new steady state level of output per worker with At  = 3. Do your results from (c) confirm that the economy is indeed converging to this new steady state?

(e) Assume that the country doubles its level of total factor productivity At . Is output per capita in steady state doubled in response?

Question 5 (18 points)

Suppose that we include government spending in the Solow model. Total government spending is given by

Gt  = Nt τwt                                         (13)

where τwt  is the tax collected from all young agents with τ ∈ (0, 1).  This means that per capita government spending, gt  =N(G)t(t)   is given by τwt . For simplicity, we assume that capital does not depreciate, i.e. δ = 0.

(a) The utility maximization problem is given by

cy,t,co,t+1,st

subject to

cy,t + st  = wt (1 − τ)

co,t+1  = (1 + Rt+1)st

Solve for the optimal consumption {cy,t ,co,t+1} as well as optimal savings st as a function of factor prices {wt ,Rt+1}, the tax rate τ and other parameters.

(b) The profit maximization problem is given by

Πt  = max   At Kt(α)Lt(1)α − wt Lt − Rt Kt

Derive the first order conditions for labor and capital.

(c) The capital accumulation equation in per capita terms is given by

st

kt+1  =

where n is the population growth rate. Using your answers from (a) and (b), write the accumulation equation as a function of kt , exogenous variables and parameters.

(d) Plot the capital accumulation line against the 45-degree line. Clearly label the steady state and show that it is stable.

(e) What happens to capital per worker in steady state when government spending per capita, g, increases? Plot the effects of an increase in g .

(f) Why is the model as it stands not the best to study the effects of government spending on steady state output? What is missing?