Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CSCD37—Analysis of Numerical Algorithms for Computational Mathematics, Winter 2023

Assignment #2: Polynomial Interpolation / Error

Due: March 14, 2023 at 11:45 p.m.

This assignment is worth 12% of your final grade.

Warning: Your electronic submission on MarkUs affirms that this assignment is your own work and no one else’s, and is in accordance with the University of Toronto Code of Behaviour on Academic Matters, the Code of Student Conduct, and the guidelines for avoiding plagiarism in CSCD37.

This assignment is due by 11:45 p.m. March 14.  If you haven’t nished by then, you may hand in your assignment late with a penalty as specified in the course information sheet.

[10]    1.   Prove the fundamental relationship between divided differences and derivatives; namely:

y(k)(xi)

xi+j xi                                                                                        k!

1SjSk

provided y e ck .

[10]    2.   Consider the function y e cn+1 and the polynomial p e pn which satisfies

k

p(j)(xi) = y(j)(xi); j = 0, . . . , ji; i = 0, . . . , k;       (ji + 1) = n + 1;

i=0

with all of the xi distinct. The error in this polynomial interpolant is given by

E(x) = y(x) - p(x) =  (x - x0 )j0 +1 (x - x1 )j1 +1 . . . (x - xk)jk+1                 (1)

where ξ e span{x0 , . . . , xk, x} = [min{x0 , . . . , xk, x}, max{x0 , . . . , xk, x}] provided y e cn+1 on span{x0 , . . . , xk, x}.

This is a fundamental formula in Numerical Approximation. The following is an outline of a possible derivation of (1). In this question you will expand this outline by proving certain key statements.       If x = xi, i = 0, . . . , k, then y(x) - p(x) = 0 since p interpolates y at these k + 1 points. Also, E(xi) = 0 in (1) since (xi - xi)ji+1 = 0. Therefore, (1) holds when x = xi .

Now assume x  xi for any i = 0, . . . , k and consider x xed. Let F (t) = y(t) - p(t) - C W (t) where C = [y(x) - p(x)]/W (x) is a constant and

W (t) = (t - x0 )j0 +1 (t - x1 )j1 +1 . . . (t - xk)jk+1                                              (2)

is a polynomial of degree n + 1. Clearly F (x) = 0, and also

F(j)(xi) = 0; j = 0, . . . , ji; i = 0, . . . , k .                                       (3)

Therefore, counting multiplicities, F (t) has at least n+2 zeros in span{x0 , . . . , xk, x}, which implies F(n+1)(t) has at least 1 zero in span{x0 , . . . , xk, x}, or, in other words,

F(n+1)(ξ) = 0, ξ e span{x0 , . . . , xk, x}.

(4)

But

F(n+1)(t) =

 

dn+1

dtn+1

 

[y(t) - p(t) - C W (t)] = y(n+1)(t) - (n + 1) ! C.

 

(5)

Therefore,

F(n+1)(ξ) = 0 =÷ y(n+1)(ξ) - (n + 1) ! C = 0 =÷ C = y(n+1))

But

y(x) - p(x)                                 y(n+1)(ξ)

W (x)                                      (n + 1) !

Now for the statements you must prove:

(a) Prove that W (t) in (2) is a polynomial of degree n + 1.

(b) Explain how (4) follows from F (t) having at least n + 2 zeros in span{x0 , . . . , xk, x}.

(c) Prove (3) and (5).

[10]    3.   In lecture we proved that the roots of the Chebyshev polynomial

Tk(x) = cos(k cos-1 (x)), k = 0, 1, . . .                                         (6)

are the optimal interpolation points on [-1, 1].

(a) Prove that (6) is a polynomial of degree k for all k > 0.

(b) Derive the leading coefcient of (6) (i.e., the coefcient of xk).

(c) Derive the roots of (6) (i.e., the so-called Chebyshev points).

(d) Complete the proof showing why the Chebyshev points are optimal.

[10]   4.   Consider interpolating the Runge function y(x) = 1/(1 + 25x2 ) with p e pn using the Chebyshev points over [-1, 1]. This is a simple interpolation problem

p(xi) = y(xi); i = 0, . . . , n

and the interpolation error formula (1) reduces to:

y(n+1)(ξ)

(n + 1) !

where

Precisely how large can the magnitude of y(n+1)(ξ) grow before the bound for the interpolation error exceeds 1016 ? For what value of n does this happen?

(Hint: For the Chebyshev points over [-1, 1], the bound for |W (x)| will be clear from your answer in # 3. Remember to consider the factor 1/(n + 1)! in (7).

[5]     5. Let qk(x) =  (1/2k -1 )Tk(x) denote the monic Chebyshev polynomial of the rst kind.  Prove that qk(x) = xqk -1 (x) - bkqk -2 (x), k > 2, where b2 = 1/2 and bk  = 1/4, k > 3.

[15]    6.   A piecewise polynomial interpolant where each piece is of relatively low degree clearly dampens many ill-effects of single polynomial interpolation such as the Runge phenomenon. We derived two forms of piecewise cubic interpolant: (1) the piecewise cubic Hermite interpolant, and (2) the piece- wise cubic Spline interpolant. The main difference between (1) and (2) is that in (1) the extra con- ditions required to determine the coefficients of each cubic piece are supplied in the underlying data, whereas in (2) the extra conditions are determined by forcing higher-derivative continuity at each knot of the interpolant.

(a) Assume additional derivative data is available from the underling function. In particular assume,

at each xi , fi(0) , fi(1) , and fi(2) are given. Derive a piecewise polynomial interpolant which fully incorporates the available data.

(b) Using only xi  and fi(0) from (a) (i.e., ignoring the derivative data), derive a piecewise polyno- mial interpolant where each piece is of the same degree as the pieces in (a). Any extra conditions required must be determined by forcing higher-derivative continuity at each knot of the inter- polant.

(c) Briefly discuss the relative advantages/disadvantages of the piecewise polynomial interpolants derived in (a) and (b). [total: 60 marks]