Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MTH762P Continuous Time Modelling in Finance, Midterm Test 2022

(B(t), t > 0) denotes the standard Brownian motion, with the natural filtra- tion FB  = (Ft(B), t > 0).

Q1. [25 marks]

(a) [3] Evaluate

P(B(3) > B(1)).

(b) [3] Evaluate

E[B(3)B(4)].

(c) [5] Determine distribution of the random variable ξ = 2B(3) - 3B(4) + 1.

(d) [5] Let (W (t), t > 0) be another Brownian motion. Show that         the joint distribution of (B(3), B(4)) conditional on B(1) = 0.5

is the same as

the joint distribution of (W (2) + 0.5, W (3) + 0.5).

Explain which properties of the Brownian motion or result from the course you use.

(e) [5] For the random variable ξ in part (c), determine the conditional dis- tribution given that B(1) = 0.5.

(f) [4] Evaluate

E[B(3)B(4) | B(1) = 0.5, B(0.7) = -0.1].

Q2. [25 marks] Consider process (X(t), t > 0) defined by the formula

X(t) = B3 (t) - 2B2 (t) - 3tB(t) + 2t

(where Bk (t) has the same meaning as (B(t))k ).

(a) [5] Determine E[X(t)].

(b) [5] Calculate the stochastic differential dX(t).

(c) [4] Represent X(t) as a stochastic integral.

(d) [4] For t > 2 determine

E[X(t) | F2(B)].

(e) [4] Write a formula for the quadratic variation (X)(t) for t > 0.

(f) [3] Are the paths of the process (X(t), t > 0) differentiable? Justify your answer.

Q3. [25 marks] Consider the simple process


X(t) =

(0,   otherwise.

(a) [5] Determine Var(X(3.5)).

(b) [3] Is the squared process (X2 (t), t > 0) also a simple process?


For the rest of the question, let

t

Y (t) =      X(s)dB(s),   t > 0.

0

(c) [3] Is the process (Y (t), t > 0) a martingale? Explain your answer.

(d) [5] Evaluate Y (6) explicitly in terms of the values of the Brownian mo- tion.

(e) [5] Find Var(Y (6)). [Hint: you may use It isometry or a direct calcu- lation.]

(f) [4] Are the paths of (Y (t), t > 0) continuous? Explain your answer.

Q4.  [25 marks] The stock price under the risk-neutral measure follows the stochastic differential equation

dS(t) = S(t)(rdt + σdB(t)),

where r = 0.05 is the annual interest rate in the riskless money market, and σ = 0.2 is the stock volatility. Suppose the current stock price is S(0) = 270 Pence.  Consider put, call and forward contracts with K = 250 Pence; the derivatives are of European type, each issued on one share of the stock and expiring in six months.

(a) [3] Represent (S(t), t > 0) as the geometric Brownian motion (that is, write an explicit formula for S(t)).

(b) [6] Use the Black-Scholes formula to determine the present time (t = 0) price of the call option. You may use online calculators, but introduce notation and show all intermediate steps.

(c) [5] Same question as in part (b) for the put option.

(d) [6] Determine the probability that the put option expires ‘in the money’ (that is, yields a nonzero payoff).  Give the numerical answer to three decimals and explain how this probability is derived from the fact that the stock price process is a geometric Brownian motion.

(e) [5] Suppose you have the opportunity to purchase the forward contract for 20 Pence. Describe in all details an arbitrage trading strategy. What is the risk-free profit you may achieve from a forward?