Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

PSTAT 174/274: Assignment # 2. (Released 27th Feb - Due 5th March 11:55pm PST)

• All Questions are equally weighted and this worksheet contributes 15% to overall grade. (if included in best 2 out of 3)

• To get full marks you must show all working and justify your solution/discussion or interpret your solution where appropriate.

• If the question is a code question you must comment all code appropriately and present all outputs with correct labelling of plots and discussion/captions.

1. (174 & 274 attempt) Characteristic Polynomials and Stationarity. (Total marks for question 33%)

For each of the time series models below undertake the following steps:

• Write each time series in characteristic polynomial form using backshift operator (MA or AR or ARMA polynomials as required)

• Factorise the relevant polynomials and find the roots of the polynomials.

• You are given the following additional information regarding the relationship between stationarity and the characteristic polynomial roots.

– An AR(p) process is a stationary process if and only if the modulus of all the roots of the AR characteristic polynomial are greater than one.

– An MA(q) process is always stationary if the MA coefficients are finite.

– An ARMA(p,q) model admits a unique stationary solution when the AR characteristic poly- nomial and the MA characteristic polynomial have no common roots and the AR polynomial satisfies that it has no unit roots.

• Use this information to determine which of the below models is stationary.

(Make sure to justify your answer.)

(a)  Yt +  (Yt + 5Yt 1 ) = ϵt ϵt 1 ϵt 2 +  (1 + B)Yt Yt

(b) Yt −  2Yt 1 = 2ϵt + ϵt 1 − (1 − B2)ϵt

(c) Yt+1 + Yt (1 B)(1 + B)Yt+1 = ϵt

(d)  ϕ(B )Yt  = ∇2 ϵt +  (1 + 2B)ϵt ,

where one of the roots of the polynomial ϕ(B ) lies inside the unit circle and all other roots lie outside the unit circle.

(e) Let {Yt} be a stationary process with ACF ρ(·) and let

M := E((Yt (ϕk1Yt 1 + . . . + ϕkkYt k ))2 ) .

By differentiating M and setting the result to zero, show that the values ϕk1 , . . . , ϕkk  which minimise

M satisfy the Yule-Walker equations

ρ(j) = ϕk1ρ(j 1) + . . . + ϕkkρ(j k)

for j = 1, . . . , k .

2. (174 & 274 attempt) ARMA and ARIMA Models.

(Total marks for question 33%)

(a)  (ONLY 174 Attempt) Let {Yt} be a stationary ARMA(1, 1) model with mean µ  0 and white noise sequence {ϵt} ∼ WN(0, σ2 ).  Calculate E (ϵtYt+k), for all k  ≥ 0 and express your answer in

terms of Kronecker-Delta functions where possible.

(b)  (ONLY 274 Attempt)

Given Y0 = c where c is a real positive constant, find the variance Var (Yt) and covariance Cov (Yt, Yt+k) of a process {Yt} given by an ARIMA(0,1,0) model which can be written as

Yt = ϵt .

Comment on whether Yt  is weakly stationary.

3. (174 & 274 attempt) Time Series Regression Models.

(Total marks for question 33%)

(a) Consider a time series regression model given as follows

Yt = β0 + β1Xt + t

where

t = ϕ 1 t 1 + ϕ2 t 2 + ϵt ,

where ϵt  ∼ WN (0, σ2 ).

Furthermore, you are told that ϕ 1  = 0.1, ϕ2  = −0.1 and σ 2  = 1.

Derive the least squares estimator for the coefficients β0 and β1 . Your solution should obtain estimators ex- pressed in terms of the data Y = (Y1 , . . . , YT )T and the parameters ϕ1 , ϕ2 and covariates X = (X1 , . . . , Xt)T and should account appropriately for the non i.i.d. regression errors t , such that the resulting estimators you obtain are unbiased.

(b) Consider the time series regression model

Yt = α + β0Xt + β1Xt 1 + β2Xt 2 + ϵt

Consider two scenarios:

• Scenario I: There is an instantaneous shock in {Xt} that only occurs at time t = s (is not a permanent change in Xt)

• Scenario II: There is an permanent shock in {Xt} that first occurs at time t = s and creates a permanent change in Xt  that continues for all times t ≥ s.

For each scenario derive the short run, intermediate and long run effect of the shock in Xt on the regression response Yt  in terms of the regression coefficients α, β0 , β 1  and β2 .