Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Experiment X

Department of Electrical Engineering and Electronics

ELEC142

Experiment X: Investigating Circuits with Multisim

Part 2: Assignment

Deadline: Thursday March 2nd 11:59 pm

Overview:

Experiment X has two main aims.  One aim is to give you experience of solving electrical circuit problems using simulation software. The second aim is to improve your understanding of the circuit theory that you study in this module.

Part 1 of Experiment X was a preparation session in which you learn to use the Multisim circuit simulation software. Part 2 of Experiment X is the assignment. This is a set of circuit problems that require you to use Multisim to understand one or more aspects of the circuit. The first two exercises have have detailed guidance on using some new aspects of  Multisim. The other  parts  have less detailed guidance and  require you to combine your understanding of circuit theory with your Multisim experience.

Assessment:

This activity is assessed by the set of questions given at the end of each section.  You should submit your answers to the   Experiment X assessment page, on the module website. You are required to upload your answer document by the deadline of Thursday March 2nd 11:59 pm.

You should type your answers to the questions at the end of the four exercises using a word-processor file and add any necessary graphs. Your graphs should be generated using a suitable graphics package and include labels, titles, and everything else required for a completed graph.

Your assignment solutions will be marked anonymously. You should not include any identifying information in your answer document.

There are four exercises in this assignment. You must answer the questions at the end of each exercise. The marks for each exercise are the same – 25% for each section for a total of 100% for the whole assignment.

Component Values:

In each question, you will have to use specific values for the resistors, capacitors and inductors in the circuit. You can find the component value allocated to you in a separate pdf document called Experiment X - Groups and Component Values. This document is in the Experiment X section of the module website.

Experiment specifications:

Module(s)

ELEC142

Level

1

Lab location

EEE Building computer laboratory

Work

Individual

Estimated time for

completion

3 - 5 hours

Assessment method

Answer to problem questions

Deadline for submission

Thursday March 2nd 11:59 pm

Submission link

ELEC142 Canvas site

Resit opportunity

none

Marking policy

Marked and moderated independently

Anonymous marking

Yes

Feedback

Via Canvas

Subject of relevance

Electrical and electronic circuits

Learning outcomes:

(S2) On successful completion of a module, students should be able to   show experience and enhancement of the following discipline-specific   practical skills: Use of Computer Aided Engineering (CAE) tools for           designing and simulating analogue systems, to determine the frequency response of simple active filter circuits, to analyse and present results,   to provide interpretation of those results.

Exercise 1 Investigating the transient response of a circuit

In this exercise, you will simulate the effect of a voltage source that switches from 0 V to voltage V1, and see how the circuit responds to the change.  This type of analysis is called transient analysis, because it is used to investigate time-dependent changes to the circuit properties.

The circuit to be simulated in this exercise is shown in Figure 1.1.  The voltage source in this circuit is called a step-voltage source. A step voltage is like a dc voltage source and a switch. The voltage initially has the value of zero, similar to a switch in OFF position. At a certain time, that you can set in the software, the step starts, similar to turning the switch ON.

Using this voltage source is equivalent to using a real voltage supply in the laboratory and switching the voltage from OFF to ON.

Figure 1.1. Circuit to be simulated in this exercise

A theoretical step voltage can change from OFF to ON instantaneously but a real step voltage must take a certain amount of time to change.   The voltage shown in Fig. 1.2 represents a real step voltage, because it takes a certain amount of time for the voltage to change from OFF to ON. For this case, the time taken for change is 10 μs.

The voltage shown in Fig. 1.2 has a rise time that is clearly not zero, but it is short enough to be considered to be a step voltage for the circuit shown in Fig. 1.1.  As you will see when you run the simulation, the time of 10 μs is much smaller than the time dependent properties of the circuit. For this reason, we can consider this voltage step to be a (nearly) ideal step. You could choose to use a much smaller rise time, for example 1 ns or 1 ps, to be closer to an ideal step. However, as you will see, the rise time of 10 μs is short enough compared to transient time of this circuit.

Figure 1.2. Input

step voltage versus

time for the above

circuit.

You can carry out transient analysis of this circuit by using the following steps.

1.    Open a new workspace to start this exercise.

2.    From the Components toolbar click on Sources, which opens up the sub-menu where you can find the voltage and current sources. From this group, select the STEP_VOLTAGE source and place it on the workspace.

3.   To set the step-voltage source, you should double click on it, which opens up the menu on the right side of the screen, as shown in Figure 1.3.

Figure 1.3.

Multisim menu to

set the parameters

of the step-voltage

source

4.    Now you need to set up the source. There are four parameters, V1, the initial voltage, VP, the final voltage, TD, the time that the step begins and TR the time taken for the voltage change from V1 to VP. To generate the voltage step shown in Figure 1.2, you need to change these values to V1 = 0 V, VP = 1 V, TD = 0 s, TR = 10 us.

5.    Place a resistor, a capacitor, and ground on the workspace and connect them together to construct the circuit shown in Figure 1.1.

6.    Change the values of resistor and capacitor to the values allocated to you in the document called Experiment X - Groups and Component Values. This document is in the Experiment X section of the module website.

7.    When you previously used Multisim, you probably mainly used the software in the Interactive mode. In this mode, the simulation runs continuously when you clock start, and keeps running until you click stop. For analysing the circuit with the step-voltage, we want to run the simulation for a short period of time, and then stop automatically, so that we can see the effect of the voltage step. To change this, go to the Simulation menu item in the bar at the top of the window (this usually shows interactive” when you first open up Multisim).  Click on it to open up the menu and choose Transient.

8.    Now click on the symbol in the upper right part of the window, to open up the Document window. This allows you to set up the transient analysis part of the simulation. You should see something like the image shown in Figure 1.4.

Figure 1.4.

Multisim menu to

set the parameters

of the transient

analysis

9.   You can see that the top part of the side-window shows two parameters, Start time and End time. These values set the time over which the simulation will run. Set the End time to 0.1 s, as shown in the figure. This means that the simulation will calculate what happens in the circuit for 0.1 s and then stop.

10.  Now it is nearly time to actually run the simulation and see what happens when the voltage changes from 0 to V1 volts. Before doing that, though, you need to add some voltage probes to measure the voltages in the circuit.Add one probe to the part of the circuit just above the voltage source. This will measure the voltage generated by the source. Add a second probe to the part of the circuit between the resistor and the capacitor. This will measure the voltage across the capacitor.

11. Click the start button to begin the simulation.

12. You should find that the simulation starts and stops almost immediately, and that the Grapher window opens automatically. (You should also see that the voltages shown in the Grapher window are very familiar. The voltage across the capacitor rises with a logarithmic dependence the same curve that you measured in Experiment S, in the Skills module.)

13.  Export the Grapher window image (or take a screenshot) and save it. You will need this later.

14. You should remember from Semester 1 that the time constant is the time taken for the voltage to reach a value that is approximately 63% of the change. Use the cursor to find the time constant of the circuit.

15. Another thing that you can see from the Grapher window is that the “step” in the step voltage cannot really be seen.  This is because the two time scales are so different. The voltage changes from 0 to 10 V in 10 us, but you cannot see that step when you plot the data for 0.1 s. Use the display settings on the Grapher window to display ony the time 0 s to 30 µs.  You should be able to see that the step- voltage does resemble the voltage shown in Figure 1.2.

16. Again, export the Grapher window image (or take a screenshot) and save it.

17.  Using the procedure described in Steps 3 and 4, change the duration of the step to 100 µs. Run the simulation again and view the output voltage. Make a new measurement of the time constant of the circuit.

Question 1: (25 marks)

In this activity, you investigated the behaviour of the circuit shown in Figure 1.1 and found the time constant of the circuit.

a)    Insert images of the two graphs that you found in steps 12 and 15. The data must be displayed clearly.

b)   What value did you find for the time constant in Step 13?

c)    What value did you find for the time constant in Step 16?

d)   Compare your answers for (b) and (c) and comment on the two results.

e)    In this activity, you set the rise time for the step voltage to be 10 µs.  Comment on the possible effect on the results of having a rise time of (i) 1 ms, and (ii) 10 ms.

Exercise 2 Investigating the frequency response of an AC circuit

In Exercise 1, you examined the behaviour of a circuit when the voltage changed from one DC value to another DC value. If you replace the DC voltage source with an AC source, you can observe the circuit behaviour when the value of the source voltage is continually changing.

The aim of this exercise is to investigate the frequency response of the RC circuit shown in Figure 2.1.

Figure 2.1. RC circuit

with an AC voltage

source

Part A: Investigating the circuit response at individual frequencies

1)   Set up the circuit shown in Figure 2.1. Set the values of resistor and capacitor to the values allocated to you in the document called Experiment X - Groups and Component Values. This document is in the Experiment X section of the module website.

2)   Add a voltage probe to the same two points that you used in Exercise 1: using one probe to measure the source voltage and one probe to measure the voltage across the capacitor.

3)    Run the simulation for the three source frequencies of 10 Hz, 1 kHz and 100 kHz. In each case, save the Grapher window images.

4)    From your results, determine the capacitor voltage for each value of source frequency. Record your results in a table: you will need to use these later.

Part B: Investigating the circuit response as a function of source frequency

In Part A, you investigated the frequency response of the circuit for three separate frequencies. To properly investigate the circuit, we want to know the response at all frequencies, not jus a few.  Multisim allows you to do this by varying the source frequency automatically and recording the result, using a simulation setting called AC Sweep. This allows you to set a range of frequencies for the voltage source, and Multisim will automatically

change the frequency across that range, recording the output as a function of the frequency. The steps below expain how to use this Multisim feature to fully investigate this circuit.          To investigate this circuit, follow the steps below.

5)   Click on the simulation setting and choose the AC Sweep option (Remember, the simulation menu is the one of the menus accessed in the blue menu bar at the top of the workspace. In Exercise 1, you set it to Transient. In this exercise, you should set it to AC Sweep.

6)    Use the settings icon to open up the settings for the AC Sweep. To do this, you should follow the same procedure as in Exercise 1. You click on the symbol in the upper right part of the window, select the Document window, and view the settings. You should see something like the image shown in Figure 2.2.

Figure 2.2.

Multisim menu to

set the paramet