Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CSC/MAT A67

Proof Assignment 2

Winter 2023

♦ Due: February 10 at 11:59pm.

This assignment is meant to help you learn how to write induction proofs in this course — and possibly for the rest of your life.

1. Here is a proof which is taken from class. It uses Principle of Mathematical Induction (PMI) to prove that 2n  < n! for every integer n 4.

Let P (n) be the proposition 2n  < n!.

We use PMI to prove that P (n) is true for every integer n ≥ 4.

Basis Step:

P (4) is the statement 24  < 4!.

This is true because 24  = 16 < 24 = 4!.

Induction Step:

For IH, let k 4 be an arbitrary integer and assume that 2k  < k!.

WTS: 2k+1  < (k + 1)!.

2k+1

= 2k · 2

< k! · 2        [by IH]

< k! · (k + 1)     [since 2 < k + 1]

= (k + 1)!

as wanted.

Therefore, by PMI, 2n  < n! for all integers n 4.

With the above proof as a model, use PMI to prove that 3n  < n! for every integer n 7.

2. Here is a proof by Principle of Complete Induction (PCI, also called strong induction), which is taken from class. It proves that f (n) < 2n  for all nonnegative integers n, where f (n) is deined by

f (n) = {2(n)f (n    3) + 3f (n    2)

if 0  n  2;

if n > 2. 

We use PCI to prove that f (n) < 2n  for all nonnegative integers n.

Basis Step:

We consider 3 cases: n = 0, n = 1, n = 2.

If n = 0, then f (n) = 0 [by deinition of f] and 2n = 1.

So f (0) < 20 .

If n = 1, then f (n) = 1 [by deinition of f] and 2n = 2.

So f (1) < 21 .

If n = 2, then f (n) = 2 [by deinition of f] and 2n = 4.

So f (2) < 22 .

Induction Step:

For IH, let k > 2 be an arbitrary integer and assume that

f (j) < 2j  for all integers j where 0  j < k .

WTS: f (k) < 2k .

f (k)

= 2f (k    3) + 3f (k  2)     [by deinition of f ; k > 2]

< 2 · 2k 3 + 3 · 2k 2             [by IH (twice); 0  k  3 < k  2 < k]

= (1 + 3) · 2k 2                  [factor out 2k 2]

= 4 · 2k 2

= 2k

as wanted.

Therefore, by PCI, f (n) < 2n  for all nonnegative integers n.

We deine a function g that maps positive integers to nonnegative integers as follows.

 0                                                           if n = 1;

 

  3                                                           if n = 2;

g(n) =  8                                                              if n = 3;

  15                                                            if n = 4;

(g(n    4) + g(n  1) + 10n  17)/2   if n > 4.

With the above proof as a model, use PCI to prove that g(n) < n2  for every positive integer n.