Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ECOS3005

Problem set 2 solutions

1. We can solve this game by backward induction. First, consider firm 2’s problem. If, in stage 1 firm 1 set a price above marginal cost (ie p1 > mc), firm 2 would set a price just below (ie p2  < p1).  Alternatively, if p1  < mc, firm 2 will want to set a price p2  > p1 .  Finally, if p1 = mc, firm 2 is indifferent between setting p2 = mc and some p2  > mc.  The above description will constitute firm 2’s strategy in equilibrium.

Firm 1 will take rm 2’s reaction into account when setting p1 . As in the Bertrand model, there is a (subgame perfect) Nash equilibrium involving p1 = p2 = mc. Note that there are also other equilibria in which firm 1 sets p1 > mc and firm 2 adopts the above strategy. Why can this be a (subgame perfect) Nash equilibrium? Does the leader or the follower have an advantage in this game?

2. Asymmetric capacity constraints.

(a) To find firm 1’s reaction function, first note that, because rm 2 is not capacity con-

strained, if rm 1 relents (raises price), then rm 2 will get the whole market. Hence, firm 1 earns no profits by relenting.  If rm 2’s price is above marginal cost, firm 1 will therefore always undercut.  Hence, we can describe firm 1’s reaction function as follows:

i. if p2 > pM , set p1 = pM (where pM is the monopoly price);

ii. if MC < p2 < pM , undercut (ie set p1 = p2 _ 6);

iii. if p2 < MC, set a price p1 > p2 .

Note that there is a slight complication for Firm 1. Because of Firm 1’s capacity con- straint, they are unable to satisfy demand at the unconstrained monopoly price of 0.65. Instead, the monopoly price for Firm 1 will be 0.66. At this price, they use their entire capacity.

(b) The intuition for rm 2’s reaction function is the same as for the symmetric Edgeworth model (but the details are different). If p1 is high, firm 2 would like to undercut. If p1 is low, firm 2 would like to relent and act as a monopolist on residual demand. We can work out the cut-off price at which firm 2 switches in the same way as in class. If firm

2 undercuts by setting a price slightly lower than p1 , profits are given by eU (p1 ) ≈ (1000 _ 1000p1 )(p1 _ 0.3).

[Note that this step is different to the symmetric case because rm 2 has no capacity constraints.] Alternatively, if firm 2 relents, profits are given by

eR (p2 ) = (660 _ 1000p2 )(p2 _ 0.3),

To calculate relenting profits, we must first solve for the optimal relenting price. This is the solution to the problem maxpeR (p). Find the rst order conditions in the usual way:

660 _ 1000p _ 1000(p _ 0.3) = 0

2000p = 960

= 0.48

The optimal relenting price is therefore pR  = 0.48.  Substituting back into the profit function, we obtain eR = 32.4.

To work out the point at which firm 2 switches between undercutting and relenting, equate eU (p1 ) and eR . This yields

(1000 _ 1000p1 )(p1 _ 0.3)   =   32.4

_1000p1(2) +1300p1 _ 300   =   32.4

p1(2) _ 1.3p1 +0.3324   =   0

This is a quadratic equation. The solution is p 1(*) ≈ 0.35. (The largest root is above the

monopoly price, so we can ignore this one).

Hence, firm 2’s reaction function is:

i. if p1 > pM , set p2 = pM ;

ii. if p1(*) < p1 < pM , undercut (ie set p2 = p1 _ 6);

iii. if p1 < p 1(*), set a price p2 = pR = 0.48.

(c) Figure 1 contains the reaction functions.  You will notice that there is again no (pure strategy) Nash equilibrium.  Unlike the symmetric case, firm 2 is the only rm that relents as part of their reaction function.

3. Cartel problem

(a) Firm i solves the problem maxqi e = qi(140 _ 0. 1qi _ 0. 1qj _ 20).

This yields FOCS: 140 _ 0.2qi _ 0. 1qj _ 20 = 0 = qi = 600 _ 0.5qj . This is Firm i’s reaction function.

Given the symmetry of the problem, we will look for a symmetric Nash equilibrium, so let qi = qj = qN . Hence, in the Nash equilibrium, qN = 400, and the market price is p = 60. Each firm earns profits of eN = 400(60 _ 20) = 16, 000.

(b) Because the firms have constant marginal costs, to calculate the cartel’s optimal out- put, we can simply calculate the monopoly output. A monopolist solves the problem

maxQ e = Q(140 _ 0. 1Q _ 20).

This yields FOCS: 140 _ 0.2Q _ 20 = 0 = Q = 600.  For each rm, the cartel out- put is then qC  = 300, and the market price is p = 80.   Each rm earns profits of eC = 300(80 _ 20) = 18, 000.

(c) We have already calculated the reaction function for each firm in part (3a). The defec- tion or cheating output is then qD  = 600 _ 0.5qC  = 450. If Firm 1 were to cheat and produce 450, while rm 2 produced the cartel output of 300, the market price would be p = 65, and the profits to Firm 1 would be eD = 450(65 _ 20) = 20, 250.

(d) If (say) Firm 1 cooperates, they obtain a payoff of VC = eC (1 +8 +82 + . . .).

If Firm 1 defects from the cartel (cheats), they would produce qD in the current period, and obtain payoffs of VD = eD +eN (8 +82 +83 + . . .).

The cartel is then sustainable if  > eD +  .

Hence, eC  > (1 _ 8)eD + 8eN = 8 >  = 8* . So, the cartel is sustainable if 8 > 8* =  =  .

(e) If (say) Firm 1 cooperates, they obtain a payoff of VC = eC (1 +8 +82 + . . .).

If Firm 1 defects from the cartel (cheats), they would produce qD in the current period, and obtain payoffs of VD = eD +8eN +eC (82 +83 + . . .).

The cartel is then sustainable if eC (1 +8) > eD +8eN .

Hence, 8 >  = 8** . So, the cartel is sustainable if 8 > 8** =  =  . A

discount factor greater than 1 implies that rms value future profits more than current profits. This is generally not the case, so the above tit-for-tat strategy is not sustainable.

(f) If each rm produces qC  = 350, the market price would be p = 70, and profits eC  = 350 * 50 = 17, 500.  A defecting (cheating) firm would produce an output of qD  = 600 _ 0.5qC = 425, and earn profits of eD = 425(62.5 _ 20) = 18, 062.5. So, the cartel is sustainable if 8 > 8** =  = 0.375. Notice that if the cartel raises its ouput from qC  = 300 to 350, this reduces the temptation to cheat on the cartel, because the defection (cheating) profits are reduced (and they are reduced by more than the cartel profits).  However, the punishment (Cournot) profits are unchanged.  This has the ef- fect of reducing the short term returns to cheating without affecting the severity of the punishment. The cartel is thus easier to sustain.