Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH 314: Fourier Methods & PDEs

Spring 2023

Homework Set 2

Due:  Thursday, January 19 (11:59pm)

Continuity; Heat and Diusion Equations, Equilibria

·  Course information is on Canvas:    http://canvas.sfu.ca

·  Textbook references are to:

[G] Mark S. Gockenbach

Partial Dierential Equations:  Analytical and Numerical Methods” (2nd edition).

Reading:

·  [G] Chapter 1: Introduction Classication of DEs, review of terminology

·  [G] Chapter 2 — S2.1: Heat ow in a bar, Fourier’s law, ICs & BCs, steady-state solutions, diffusion; S2.4: Conservation laws, advection

I. Textbook Questions:

。[G] Section 2.1: (pp.18—20)

Physical interpretation and equilibria for the diusion equation

II. Additional Questions:

Also submit solutions to the following problems:

1.  Continuous function:

Let f : [a, b] →e R be a continuous function on some interval [a, b] c R (where a < b).

(a) For x0  ∈ [a, b], give the ε-δ definition of the statement f is continuous at x0.               Use this to prove that if f (x0 ) > 0, then there exists h > 0 so that f (x) > 0 for all x ∈ (x0 _ h, x0 + h).

(b) Assume that for every subinterval [x1 , x2] c [a, b] (with a < x1  < x2  < b) we have

2  f (x) dx = 0.

1

Prove that f (x) = 0 on [a, b].

Write down an extension of this result to functions on R3 .

2.  Heat equation with circular symmetry:

In this problem we will derive the heat equation with circular symmetry.

(This will be equivalent to working in 2d polar coordinates (r, θ) with no θ-dependence; or in 3d cylindrical coordinates (r, θ, z) in which quantities are independent of θ and z .)

Assume that the temperature is circularly symmetric: u = u(r, t), where r = ^x2 + y2 .

[Similarly, the thermal energy density (energy per unit volume) is e = e(r, t), the heat ux density (heat per unit area per unit time) is q = q(r, t), and any material properties depend at most on r .]

Consider a thin lamina:  a circular annulus a  < r  < b, with constant height h (in the z-direction).

(a)  The heat energy density is related to the temperature by  e(r, t) = ρ(r)cp(r) ╱u(r, t) _T0, where T0  is some reference temperature at which the total internal energy is E0 .

Show that the total heat energy in the annular lamina is

E (t) = E0 + 2πh    b e(r, t)r dr = E + 2πh    b ρ(r)cp(r)u(r, t)r dr

a                                                    a

(for some constant E), and hence nd an expression for dE/dt.

(b) Any heat ow is assumed to be purely in the radial direction, so the heat ux density is q = q  (where  = cos θ i + sin θ j is the radial unit vector).

Show that the ow of heat energy per unit time out of the region at r = b is  2πh b q(b, t), and obtain a similar result at r = a.

Hence find the total heat ow per unit time into the annular region (as an integral over the region a < r < b).

(c) We saw in class that in one dimension (i.e. x-dependence only), the continuity equation — the differential equation expressing conservation of heat in the absence of external sources and sinks, is e/∂t + ∂q/∂x = 0.

Find the analogous expression in the circularly symmetric case (dependence only on r). (d) Fourier’s law of heat conduction, in general (for isotropic materials), is that the heat

ux density is proportional to the temperature gradient:

q = _K1u,

where K is the thermal conductivity.  In particular, if u depends only on r, then heat flows are only in the radial direction, and

q = q .  = _K  . 1u = _K u

Assuming that all material properties  (ρ, cp  and K) are spatially homogeneous, use the results from parts (a)– (c) and Fourier’s law to derive the circularly symmetric heat equation without sources or sinks,

 =   ,

where κ is the thermal diusivity.

(e) Find the equilibrium temperature distribution u(r) inside the circular annulus a < r < b if the outer radius is at temperature T2  and the inner radius is at temperature T1 .

3.  Equilibrium solutions:

Determine which of the following PDEs have  equilibrium  (steady-state) solutions, that is, time-independent solutions (satisfying ut  = 0):

In each case, either nd the equilibrium solution and sketch its graph (by hand or with the help of Matlab or another software environment), or explain why it doesn’t exist.

(a)   =   + 1

(b) utt + 3ut = u北北 + t

(c)   =

with   u(1, t) = 0   and   u(2, t) = 0.

with   u(_1, t) = 0   and   u(1, t) = 0.

u(0, t) = 0   and   u(2, t) = cos t.

(d) ut = u北北 + u          with   u (0, t) = 1   and   u(1, t) = 0.

4.  Non-existence of equilibria:

Consider the heat equation ut  = κu北北  on the interval 0 < x < é, with Neumann boundary conditions u (0, t) = _1 and u (é, t) = 0.

Give a physical interpretation of the PDE and these BCs; and use it to explain why this system will not have an equilibrium.   Explain why,  instead, you expect the temperature u(x, t) to increase as time t increases.

[You do not need to do any calculations for this problem! Just give a clear explanation based on the physical interpretation;  we will be studying in some depth what is going on here mathematically.]

5. Inhomogeneous PDE and BCs:

Consider the heat equation with a source

ut = u + x(1 _ x)       with   u(0, t) = 0   and   u (1, t) = _1.

(a)  Give a physical interpretation of the boundary conditions.

(b) Find the equilibrium solution, denoted by p(x), say; and plot it using Matlab.               [You may wish to use the given code hw2code .m as an example; this code plots the equilibrium solutions from Examples 2.2 and 2.3 of the textbook, as in Figure 2.3.]

(c) Let u(x, t) = p(x) + v(x, t), where v(x, t) is the deviation from the equilibrium.  Show that the function v(x, t) satisfies the associated homogeneous PDE and BCs

vt = v北北          with   v(0, t) = v (1, t) = 0.