Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH20701

1.

Let X,Y be a bivariate random variable with joint probability density function given by

fX,Y (x,y) =

where A > 0 is a constant.

(i)  Show that A = 4. [4 marks]

(ii)  Find the marginal probability density function of X . [4 marks]

(iii)  Find the marginal probability density function of Y . [4 marks]

(iv)  Find P(X < 2Y | X < 2). [8 marks]

[End of Question 1; 20 marks total]

2. Let X and Y be discrete random variables, which are independent of each other, with probability mass functions given by

P(X = k) = (

Let Z = min(X,Y).

(i)  Prove that c =  .

P(Y = k) = 

k = 2, 3, . . .

otherwise, [5 marks]

(ii)  For k 2 {1, 2, . . .} find P(X > k) and P(Y > k). [5 marks]

(iii)  For k 2 {1, 2, . . .} find P(Z > k). [5 marks]

(iv)  Hence, or otherwise, find the probability mass function of Z . [5 marks]

[End of Question 2; 20 marks total]

3. Let X and Y be continuous random variables, which are independent of each other, with probability density functions given by

fX (x) =     fY (y) = 

(i)  Find the probability density function of X + Y . [6 marks]

(ii)  Let Z = X/Y . Find the joint probability density function of (Z,Y). [8 marks]

(iii)  Hence, or otherwise, find the probability density of Z . [6 marks]

[End of Question 3; 20 marks total]

4. The joint probability density function of random variables X and Y is f(x,y) =

(i)  Derive the conditional probability density functions f(x | y) and f(y | x), stating clearly for which values of y and x they are respectively defined. [7 marks]

(ii)  Determine E[Y | X = 1]. [7 marks]

(iii)  Calculate Cov(X,Y). [6 marks]

[End of Question 4; 20 marks total]

5. a) Let U denote a random variable with probability density function

f(u) = {        

(i)  Define the moment generating function of a continuous random variable. [3 marks]

(ii)  Derive the moment generating function MU (t) of the random variable U. [4 marks]

(iii) Write down the power series expansion of MU (t) and hence nd the variance and third moment of U. [3 marks]

b) The random variable X has probability density function

f(x) = {

where ✓ > 0 is a constant.

(i)  Show that, for t < ✓ , the moment generating function of X is

  

MX (t) = [5 marks]

(ii) The number Z of tasks which a worker is required to complete has probability mass function

P(Z = k) = {0(q)k1p

k = 1, 2, ...

elsewhere,

where p,q 2 (0, 1) are such that p + q = 1.

The tasks are of independent durations,  each  having the same distribution as X above.   Z is independent of the durations of the tasks.  Using generating functions or otherwise, determine to which family the distribution of the time taken to complete all the tasks belongs. [5 marks]

[End of Question 5; 20 marks total]

6. a)

(i)  State Chebyshev’s inequality. [3 marks]

(ii) A telephone exchange handles, on average,  10,000 calls an hour with a variance of 2,000.   Use Chebyshev’s inequality to derive a lower bound for the probability that the exchange will handle between 9,920 and 10,080 calls during a 1 hour period. [3 marks]

(iii) Assume now, that the exchange services a town of 12,500 people who each, independently, call the exchange with probability 0.8 during a given 1 hour period.  Calculate the probability of the same event as in (ii) using the Normal approximation to the Binomial distribution. [4 marks]

b) Let Z1  and Z2  be independent random variables, each normally distributed with mean 0 and variance

1. Let Z = (Z1 ,Z2 )T  and define

X = (X1 ,X2 )T  = AZ

where

(i)  Determine the covariance matrix of A =    2   [4 marks]

(ii)  Stating any results to which you appeal, prove that the joint probability density function of X1  and X2  is

f(x1 ,x2 ) =  exp{−(x1(2) + x2(2) + ^2x1 x2 )}         − 1 < x1 ,x2  < 1. [6 marks]

[End of Question 6; 20 marks total]