Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH 3300 Final Exam - Sample (Solutions)

1.  (4+3+3 points) Let

A = [ a1

a2 a3  ] =  l 0(5)

3

8

2(9)

(a) Explain if {⃗a1 ,⃗a2 ,⃗a3 } is linearly independent.

(b) Explain if {⃗a1 ,⃗a2 } is linearly independent.

(c) Explain if A is invertible.

Solutions:

(a) Reduce A to row echelon form,

A l0(5) 0

3

2

9(1)

This show that there are 3 pivots so the rank of A is T = 3. which is the number n of columns of A . Hence the set of columns {⃗a1 ,⃗a2 ,⃗a3 } is linearly independent.

(b) The set {⃗a1 ,⃗a2 } is a part of the set {⃗a1 ,⃗a2 ,⃗a3 } that is linearly independent by (a), it is also linearly independent.

(c) A is invertible since it has full rank 3 (T = n = 3) by the Invertible Matrix Theorem.

2.  (10 points) (a) Find A 1  for

A = 0

1(a)

0

b

(b) Find X in AX =  l 2(1) 2(0)

Solutions: (a) Apply elementary row operations

0     0     1   0   0   1 ~ 0     0   1   0   0   1 ~ 0   0

A 1  =  l

0   0     1

(b) Let B =  「(l) . Then X = A 1 B =  「(l) 1 + 2 .

3.  (8+2 points) Given

2

A = 6(1)

5(4)

2

4(4)

(a) Find the LU factorization of A .

(b) Explain how to use (a) to quickly find |A| with almost no more computation. Solutions: (a)

A =  l   21 l 0(2) l 0(2) 7(4) 5(2)

6 2      4              0 14    10              0      0      0

To find L , perform the following operations on the first matrix below, divide the first column by the circled number (pivot) 2,

divide the second column by circled number (pivot) 7,

「(l) 6(1) 1(7)4   1 「(l) 2(1)   1 = L

Therefore,

A = LU =  l 1(1)         1(0)   0(0) l 0(2)   −7(4) 5(2)

(b) |A| = |LU| = |L||U| = 0.

4.  (4+3+1+1 points) Let T : R4 −→ R3  be defined by

T  \( l'' l)) =  「(l) l(」)

(a) Find the matrix A for T under the standard bases and find its reduced row echelon form.

(b) Find a basis for each of the column space C(A), row space Row (A), and null space N(A).

(c) Is the transformation T one-to-one? Justify your answer.

(d) Is the transformation T onto? Justify your answer.

Solutions:

(a) A == [ ⃗a1 ⃗a2 ⃗a3 ⃗a4 ] = [ T(⃗e1 ) T(⃗e2 ) T(⃗e3 ) T(⃗e4 ) ] = l 0(1)

1(1)

0

0

1

0(0) 1 l ,

RREF = l 0(1) 1(0) 0   0

0

0

1

1

1(1) l

(b) Using the RREF, a basis for C(A) is {⃗a1 ,⃗a2 ,⃗a3 } ,

a basis for Row (A) is {(1, 0, 0, 1), (0, 1, 0, − 1), (0, 0, 1, − 1)} ,

and a basis null space N(A) is {(1, 1, 1, 1)} ,

where all vectors are column vectors.

(c) First explanation: the null space N(A) is non-trivial, so T is not one-to-one.

Second explanation: Matrix A is of size m × n = 3 × 4. From the RREF of A, the rank r = 3 < n, therefore T is not one-to-one.

(d) From the RREF of A, the rank r = 3 = m, therefore T is onto.

5.  (4+3+3 points) (a) Compute the determinant |A|, where

l 1 2     5   2

A =

2     0     3   5

(b) Use part (a) to justify that A 1  exists.

(c) Find the following values

|AT A 1 | =

|A1 AT A| =

| − A| =

Solutions: (a) Expand along second row of A, then along the last row of the resulting matrix,

' 1 2   2 '

(b) From (a), since |A| 0, A 1  exists by the Invertible Matrix Theorem.

(c) |AT A 1 | = |AT ||A1 | = |A||A1 | = 1

|A1 AT A| = |A1 ||AT ||A| = |A| = 12

| − A| = ( 1)4 |A| = 12

6.  (2+6+2 points) Let

A = [ a1

a2 a3  ] =  l1(1)   1(0)

(a) Explain that {⃗a1 ,  ⃗a2 ,  ⃗a3 } is a basis for the column space C(A).

(b) Construct an orthogonal basis {⃗v1 ,  ⃗v2 ,  ⃗v3 } using {⃗a1 ,  ⃗a2 ,  ⃗a3 } .

(c) Find an QR Factorization for A .

Solutions: (a)  |A|   =  1 0,  by invertible matrix theorem,  the set of columns {⃗a1 ,  ⃗a2 ,  ⃗a3 } is linearly independent, and is therefore a basis for C(A) by definition (of a basis).

(b) We apply GSP (Gram-Schmidt Process using what we called the Beautiful Formula for the projections in class) to the basis in (a), we obtain (omitting the algebra) an orthonormal basis {⃗u1 ,⃗u2 ,⃗u3 } with

u1  = ( , , ),⃗u2  = ( , , ),⃗u3  = (0, , ),

each being a column vector.

(c) Since Q = [ ⃗u1 ⃗u2 ⃗u3  ],

R = QT A = 「(l) [ a1

l R =

l

⃗a2

3

^3

0

0

1

^6

1

^6

a3 ] =

2

^3

2

^6

0

0

1 ^2

1

^3

1

^6

1

^2

l ⃗u⃗a1

0

and

7.  (10 points) Let

A =  l 0(4)

1

2(0) =  l   0(2)

1 , 11

(1) Find a least square solution of A⃗x = .

(2) Find the distance from to the column space C(A).

Solutions:

(1) We solve the system of normal equations AT Ax= , where AT A = ] , =  「(l) 1

There is only one least square solution for this problem (though not true in general):

x = [2(1) ]

(2) The distance from to the column space C(A) is the same as the least square error,

i.e.,

Ax= 「(l) 1 「(l)

[2(1) ] = ^84

8.  (10 points) For the quadratic form

Q(x) = 2x1(2) 6x2(2) + 6x1 x2 ,

find an orthogonal change of variables to transform Q(⃗x) into a new form without cross terms, and write down the new form explicitly.

Solutions: Note that Q(⃗x) = ⃗xT A⃗x with (symmetric) matrix for Q(⃗x) given by

A = [3(2) 6(3) ] ,

which has eigen-values λ 1  = 7 and λ2  = 3.

A basis for the eigen-space N(A− λ 1 I) is [ ]3(1) , which is normalized as ⃗u1  = [ 0(0)   ]. A basis for the eigen-space N(A − λ2 I) is [1(3) ], which is normalized as ⃗u2  = [ 0(0)   ].

(Note:  for symmetric matrix A  with larger size n, one may need to apply Gram-

Schmidt Process to obtain orthonormal bases for some eigen-spaces N(A − λI).)

Hence the orthogonal matrix P  =[ u1 u2  ] =  [ 0(0)

change of variables is ⃗x = P⃗y, which gives

Q(x) = Q(Py) = yT PT APy = yT  [ 0(7)   3(0) ] y = 7y1(2) + 3y2(2) .

9.  (13 points) Find a SVD (Singular Value Decomposition) of

A =  l    0(1)   1(1)

1   1

Solutions: AT A = [0(2)   3(0) ]. Characteristic equation |AT A − λI| = (λ − 3)(λ − 2).    Eigen value λ1  = 3, with normalized eigen-vector v1  = [1(0) ]. Eigen value λ2  = 2, with normalized eigen-vector v2  = [0(1) ]. V = [ v1 v2  ]= [1(0)   0(1) ].

Singular values σ1  =^λ1  =^3, σ2  =^λ2  =^2. Σ =  l

0      0 .

Next u1  = =  「(l) , ⃗u2  = =  「(l) , and ⃗u3  can be found by solving ⃗y

from system of equations ⃗u1(T)⃗y = 0, ⃗u2(T)⃗y = 0, or equivalently AT ⃗y = 0, i.e.,

A basis for the solutions space is ⃗y =

l

Hence u3 = = , and U == [ ⃗u1 ⃗u2

The SVD is A = UΣVT , or

l u3 ] ==

l     1

1(2) .