Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Math 245 - Linear Algebra - Exam 2 - Fall 2022

1. Circle your choice. No explanation required.                                                                (1 pts each)

(1) True False: The set {(x, y) : x2 + y2 = 0} is a subspace of R2 .

True: Notice that this set is consists only of {(0, 0)} which is a subspace.

(2) True – False: The non-zero columns of A form a basis for the column space of A.

False: It should read the pivot columns of A form a basis for the column space of A.

(3) True False: If A is a 4 × 6 matrix with 2 pivot columns, then N(A) = R4 .

False: The rank theorem says that dim N(A) = 4. However, N(A) is a subspace of R6 .

(4) True False: If A is a 3 ×3 matrix with det(A) = 0, then one row must be a scalar multiple of another row.

False: The det(A) = 0 condition just says that the three rows are linearly dependent. There are several ways for three rows to be linearly dependent without one being a mul- tiple of the other. For example, row three can be the sum of the first two rows.

(5) True False: The matrix [0(1)   1(1)] is diagonalizable.

False: The eigenvalues are 1, 1 but the corresponding eigenspace is one dimensional.

(6) True False: If A is diagonalizable, then A is invertible.

False: The zero matrix is diagonalizable (in fact diagonal) but is not invertible

(7) True False: If A is a 3 × 3 matrix with det(A) = 1, then the rank of A is 3.

True: The condition det A = 1 says that A is invertible and thus, since A is 3 × 3, it must have rank equal to 3.

(8) True False: If A100 is invertible, then A is invertible.

True: If A100 is invertible, then 0  det(A100) = det(A)100 and thus det A  0 and hence A is invertible.

(9) True – False: If zero is an eigenvalue of A, then A is not invertible.

True: If 0 is an eigenvalue, then there is a nonzero vector v such that Av = 0. This says that N(A)  {0} and thus A is not invertible.

(10) True – False: A 3 × 3 matrix with eigenvalues 1, 2, 4 must be diagonalizable.

True:  Eigenvectors from different eigenspaces must be linearly independent.  Since there are three distinct eigenvectors, there must be three linearly independent eigenvec- tors enough to form a basis in R3 .

(11) True – False: A 3 × 3 matrix with eigenvalues 1, 1, 4 can never be diagonalizable.

False: The diagonal matrix with diagonal entries 1, 1, 4 is diagonalizable.

(12) True False: If A is an n × n diagonalizable matrix, then each vector in Rn can be written as a linear combination of eigenvectors of A.

True: If A is diagonalizable, then A has a basis of eigenvectors and thus every vector an be written as a linear combination of eigenvectors of A.

2. Compute a basis for the subspace {(x, y, z, w) ∈ R4  : x − y + z + w = 0, x + 2z − w = 0, x + y + 3z − 3w = 0}.                                                                                                                  (8 points)

The subspace above is the null space of the matrix

l

1     1     3    −3  .

This matrix row reduces to

l0(1)

0

1

0

2

1

0

2(1)

0   .

The says that the variables z and w are free variables and thus every vector in the null space of A

can be written as

l x          l 2

w(z)  = z 0(1) 

Thus

l 1(2)

0(1) 

l1

1  .

2

form a basis for the null space – and hence the subspace.

3. Find a basis for the subspace spanned by the vectors

(1, −1, −2, 3), (2, −3, −1, 4), (0, −1, 3, −2), (−1, 4, −7, 7), (3, −7, 6, −9).

(8 pts)

Consider the span of these vectors as the column space of

l 1

3(−)2

2

3

1

4

0

1

3

2

1

4

7

7

7 9  .

This matrix row reduces to

l1

0

0

1

2 1

0

0

  

0

0

0

0

0

0

1      . 0     0

From here one can see that the first, second, and fourth columns of the original matrix are pivot columns and thus the vectors (1, −1, −2, 3), (2, −3, −1, 4), (−1, 4, −7, 7) form a basis for the span.

4.  Solve the system x\(t)  =  − x(t) + y(t), y\(t)  = x(t) − y(t) with initial condition x(0)  = 2, y(0) = 1. Be sure to show all work.                                                                                   (10 points)

This system can be written in matrix form as

X\ = AX,    X(0) = [  ]1(2) ,

where

A =  [     1] .

This matrix is diagonalizable with

A =  [ 1   ][1   ] 1 .

Thus

X(t) =  [ 1   2(1)t] [ 1   ] 1  [  ]1(2) .

A calculation yields

X(t) =  t2(1)t] .

Thus

x(t) = e 2t + e t    and   y(t) = −e2t + 2e t .

5. Match each system with its trajectories. Provide brief explanations.

(1) x\ = −x + 4y, y\ = −2x + 5y

(2) x\ = x − 4y, y\ = 2x − 5y

(3) x\ = −5x + 8y, y\ = −4x + 7y

(4) x\ = 5x − 8y, y\ = 4x − 7y

The general solution to x\ = −x + 4y, y\ = −2x + 5y in vector form is

X(t) = c1e3t  [  ]1(1) + c2et  [  ]1(2) .

This matches figure 3.

The general solution to x\ = x − 4y, y\ = 2x − 5y in vector form is

X(t) = c1e3t  [  ]1(1) + c2et  [  ]1(2) .

This matches figure 2.

The general solution to x\ = −5x + 8y, y\ = −4x + 7y in vector form is

X(t) = c1e3t  [  ]1(1) + c2et  [  ]1(2) .

This matches figure 4.

The general solution to x\ = 5x − 8y, y\ = 4x − 7y in vector form is

X(t) = c1e3t  [  ]1(1) + c2et  [  ]1(2) .

This matches figure 1.