Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Matrix Algebra and Linear Models: Problem Sheet 4

Present all your answers in complete sentences .  For R exercises, include screenshots and/or code .  Questions

or sub- questions with an asterisk ∗ comprise your homework.

1. Do parts (i)-(iv) and (vii) by hand; you may use a calculator for parts (v) and (vi).

(i) Find x, y ∈ R such that

(a)   ei   = x + iy                                  (b)   2ei   = x + iy

(ii) Find r ∈ R+ , ϕ ∈ [0, 2π) such that

(a)   1 + i = reiϕ                                                   (b)    5i = reiϕ

(iii) Let z1  = 1 + i, z2  = 2 i. Compute Re(z1 ), Im(z2 ), z1 + 2 , z1 /z2 , and |z1 z2 |.

(v)  (You may use a calculator in this part.) Find z5  such that cos(z5 ) = ^2.

(vi)  (You may use a calculator in this part.) Compute the principal value of !e(1)"1+i . (vii) Compute the determinant and the inverse of the matrix  #11(+) i    1  i$

2. Use De Moivre’s formula

cos(nϕ) + isin(nϕ) = (cosϕ + isinϕ)n

to derive the following relations

cos(3ϕ) = 4 cos3 ϕ 3cosϕ        sin(3ϕ) = 4sin3 ϕ + 3sinϕ .

3. Use Euler’s identity eiϕ  = cosϕ+isinϕ to show the following representations for trigonometric functions:

eiϕ e iϕ                               eiϕ + eiϕ

4. The following extension of the rational numbers is analogous to the construction of the complex numbers from the real numbers.

Consider numbers of the form z = x +^2y where x and y are rational numbers. We call the set of all these numbers Q(^2), i.e., Q(^2) = {x +^2y ; x, y Q}. Show that if z1 , z2  Q(^2) then

(i) z1 + z2  Q(^2)

(ii) z1 z2  Q(^2)

(iii) If z1   0 then 1/z1  Q(^2) (hint: use the fact that ^2 is irrational.)

(iv) If z1   0 then z2 /z1  Q(^2)

5. In this problem we use complex numbers as a tool to prove a geometric statement. Let v = (x1 , y1 ) and w = (x2 , y2 ) be two vectors in R2  and let A(v, w) be the oriented area of the parallelogram spanned by v and w, i.e.,

|A(v, w)| is the area and A(v, w) > 0 if w is to the left of v and A(v, w) < 0 if w is to the right of v. 

w

v

(i) Compute A(e1 , e2 ) and A(e2 , e1 ) where e1  = (1, 0) and e2  = (0, 1).

(ii) Show that A(v, w) = &v&&w&sin(θ), where θ ∈ [ −π , π] is the angle between v  and w.

Hint: You can use without proof the fact that

the area of a parallelogram is the length of the

base times the height, A = ah. 

a

(iii) Show that

A(v1 , v2 ) = x1 y2  x2 y1  .

Hint: Consider ℑ(z1 z2 ) for z1  = x1  + iy1  = r1 eiϕ1   and z2  = x2  + iy2  = r2 eiϕ2 .

6. Let n be a positive integer, a complex number z is called an n’th root of unity if zn  = 1 .

(i)  Show that if z is an n’th root of unity, then |z| = 1.

(ii) Find all roots of unity for n = 2 and n = 3 and plot their location in the complex plane.

(iiii) For an arbitrary n ∈ N, show that there are exactly n different roots of unity and describe their

location on the unit circle.

 7. Inverse Trigonometric and Hyperbolic Functions:  By definition, the inverse sine w  =  arcsin z  is the

relation such that sin w = z .  The inverse cosine w = arccos z is the relation such that cos w = z .  The inverse tangent, inverse cotangent, inverse hyperbolic sine, etc., are defined and denoted in a similar fashion.  (Note that all these relations are multivalued.) Using cos w = (eiw + eiw)/2 show that

arccosz = w = iln(z +^z2 1)

8. Let

T1 (x, y)     =    (x + y , 2x y , x + 2y)        ,                T2 (x, y , z)                =    (2z , x + y + z),

T5 (x, y)     =    (x + y , x y)                      ,   T6 (x + y , y + z , x + y + z)   =    (x + z , y + z , x + 2y + z)

(a) For each i ∈ {1, . . . , 6}, find positive integers m and n such that Ti  : Rm  Rn .

(b) For each i ∈ {1, . . . , 6}, state whether Ti  is linear or not. If it is, find the corresponding matrix MTi that represent the linear transformation Ti .  (Hint: T6  IS linear. How would you nd MT6 ?)

(c) For the Ti  which are linear, state whether they’re surjective, injective, both surjective and injective (bijective), or neither.

(d) Which of T1 ◦ T2 , T2 ◦ T1 , T1 ◦ T1  and T2 ◦ T2  is/are well-defined? For whichever is/are well-defined write the matrix associated with the corresponding linear transformation.

(e) If it exists, what is the inverse of the linear transformation T5 , i.e, what is T1 (x, y)?

 9. Let S  : Rn   → Rm  and T  : Rp   → Rn  be two linear transformations.   Take as given the rank-nullity

theorem, and the following fact discussed in class and proven in the notes:

nullity(S ◦ T) = nullity(T) + dim(ker(S) ∩ Im(T))

Using these prove the following:

(a)

rank(S T) = rank(T) dim(ker(S) Im(T))

(Hint: Rank-nullity theorem.)

(b)

rank(S ◦ T) ≤ rank(T),   rank(S ◦ T) ≤ rank(S)

(Hint: The previous part, and also the fact that for any matrix M , rank(M) = rank(MT ).)

(c)

nullity(S T) nullity(T),   nullity(S T) nullity(S) + p n

(d)  S ◦ T = 0 if and only if image(T) ⊆ kernel(S).

(e) If S is invertible, then rank(S ◦ T) = rank(T) and nullity(S ◦ T) = nullity(T).