Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Math 170A, Fall 2022

HOMEWORK #6

Homework problems that will be graded (Q1 - Q5, 30pts in total):

Q1. Let A ∈ Rn×m , n ≥ m, rank(A) = m. Write out and explain the SVD of the matrix (AT A)1AT  in terms of the SVD of A = UΣVT .

a) Based on the definitions in class, conclude that the pseudoinverse of A, A†   = (AT A)1AT .

b) Use (a) to calculate AA.

c) Use the SVDs of A and A†  to calculate AA, simplifying as much as possible.

Q2.  Consider the matrix

A =  l  

 1     1     .

Compute ∥A∥2  and κ2 (A).

Q3. Let v,w  ∈ Rn   and define A  = vwT .   Prove that  ∥A∥2   =  ∥v∥2 ∥w∥2 .   Is the same

result true for the Frobenius norm, i.e. is  ∥A∥F   =  ∥v∥2 ∥w∥2 ?  Prove this or give a counterexample.

Hint: For the first part, figure out the rank and the SVD of A. For the second part: consider the result from HW5, Q2 a.

Q4.  (This is similar to exercise 5.1.24 from the textbook, and it is meant to show you why

computing roots of polynomials is numerically unstable.)

Let A = [0(1)   1(0) ], the 2 × 2 identity matrix.

(a) Show that the characteristic equation of A is

λ2 − 2λ + 1 = 0.

It has a single, repeated, eigenvalue: λ 1  = λ2  = 1.

(b) We now perturb one coefficient of the characteristic polynomial slightly and con- sider the equation

λ2 − 2λ + (1 − ε) = 0,

where 0 < ε ≪ 1. Solve the equation for the roots 1  and 2 , in terms of ε .

(c) Show that when ε = 10 12 , | 1  − λ1 | and | 2  − λ2 | are one million times bigger than ε .

(d) Sketch the graphs of the original and perturbed polynomials (using some ε bigger than 10 12, for example ε = 0.01), to give some indication why the roots are so sensitive to the ε pertubation.

You can use the plot”feature in MATLAB, or any other software you wish.

Q5.  (MATLAB problem)

Let

l 2(1)   2

A =

0   1

2(2)   .

a) Use the MATLAB function rank to figure the rank of A.

b) MATLAB’s pinv command returns the pseudoinverse of a matrix.  Use pinv to compute the pseudoinverse A  of A.

c) Use MATLAB’s svd command to find the singular values of AA†  and AA, and calculate AA†  and A A.

Using the results of problem Q1b, and Q1c to explain AA†  and AA.