Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Computational Methods for Economics

Problem Set 4

Production and labor supply.  Consider an economy in which there is a worker with preferences for leisure l and a consumption good c, represented by the utility function U (c, l) = u (c) + v (l).  The consumption good is produced by a competitive firm that uses labor n and has access to technology y = f (n), where y is the quantity produced of the consumption good. The firm is owned by the representative agent and hires labor for a wage w in a competitive labor market. The representative agent has N¯ hours available, which she allocates to labor and leisure activities such that l + n = N¯ .  The problem of the representative agent is to choose how much to consume c and how many hours to work ns  in order to maximize her utility, subject to her budget and time constraints, that is:

n(a)s(x)u (c)+v (N¯ _ ns)

st●   c wns+ π

where π are the profits made by the rm (owned by the agent) and all relative prices are expressed in terms of the consumption good (i.e. the price of c is 1). The problem of the firm is to choose how much labor to hire nf  in order to maximize its profits, taking the wage w as given:

max f nf wnf

An equilibrium in this economy is allocations ,c, ns , nf and a wage w such that: (i) given w, the allocations c and ns solve the worker’s problem, (ii) given w, the allocation nf  solves the firm’s problem, (iii) the market for the consumption good clears c = y, and (iv) the market for labor clears ns = nf .

The rst-order conditions of the Lagrangian associated with the worker’s problem are:

u\ ( )c _ λ = 0

_v\ (N¯ _ ns)+λ w = 0

where λ is the Lagrange multiplier for the budget constraint.  Rearranging the above equations and assuming that the budget constraint binds, we get an equation for ns:

v\ (N¯ _ ns) = u\ (wns+π)w                                                           (1)

as a function of the wage w and the firm’s profits π .

The first-order condition of the firm’s problem is:

f \ nf _ w = 0

which implies that wages equal the marginal product of labor w = f \ nf and profits are π = f nf f \ nf nf . Plugging these into equation (1) and using the market clearing condition for labor nf  = ns = ne we get an equation for the equilibrium labor supply ne:

v\ (N¯ _ ne) = u\ (f (ne)) f \ (ne)                                                   (2)

Assume that f (n) = An1   α_ , u (c) =1(c)_(1_)σ(σ) , and v (l) = ψ1(l)   Then, their derivatives are f\ (n) =

1.  (10 points) Show that equation (2) can be rewritten as:

ne = N¯ _  (ne)α+σ (1_α)ε(1)

(3)

with the above assumptions for f , u, and v.

2.  (20 points) Create a Matlab function g (ne ,N¯ ,A, α , ε , σ , ψ) that returns the value on the right-hand- side of equation (3). Create a plot with ne on the horizontal axis and g (ne , ●●● ) on the vertical axis; also include the 45° line. Let the horizontal axis take values between 0 and 24. Assume N¯ = 24 (24 hours in a day), A = 2, α = 0●33, ε = 1●9, σ = 2, and ψ = 2. Would you recommend using a function iteration method to solve for ne?

3.  (20 points) Create a Matlab function that solves for ne in equation (3) using the bisection method.

4.  (20 points) Create a Matlab function that solves for ne in equation (3) using fsolve.

5.  (10 points) How many hours does the worker devote for leisure in this example?

6.  (20 points) Which of the two methods you tried in parts 3 and 4 is faster to solve for ne?  If the answer is ambiguous, explain why.